LoewyDecomposition

\documentstyle[12pt]{article}
\input{latlib}
\parindent 0mm
\pagestyle{empty}
\topmargin 0mm
\headheight 0cm
\headsep 0cm
\footheight 0cm
\footskip 0mm
\textheight 275mm

\begin{document}
\begin{large}
\vspace*{5mm}
\centerline{\fbox{\parbox{11cm}{\Large\bf UserFunction LoewyDecomposition} }}


\vspace*{5mm}\noindent{\bf LoewyDecomposition}$(u:LODO(RATF\1 Q,x))$
The single argument $u$ is an ordinary differential operator of order 2 or 3.
The meaning of the parameters is as follows.

$x:$ Variable.

\vspace*{1mm}\noindent{\bf Specification.}
The Loewy decomposition of $u$ into irredicible right factors is returned.

 

\vspace{1mm}\noindent{\bf Examples.}
The input for the examples is given in {\em Reduce} algebraic mode syntax. The output for each minisession is returned in a separate window.


\4{\tt do:=D(x,2)+(x+1)/x**2*D(x)-2/x**3;}

\4{\tt LoewyDecomposition(do|LODO(RATF Q,x)|);}

\vspace{1mm}\hspace*{30mm}
\fbox{\parbox{11cm}{

The Differential Operator:
\vspace*{1mm}

$D^2+\fracsm{x+1}{x^{2}}D-\fracsm{2}{x^{3}}$
\vspace*{1mm}

Loewy Decomposition of Type ${\cal L}^2_{2}:\1$
\vspace*{1mm}

$(D+\Frac{1}{x+1})(D+\Frac{1}{x}+\Frac{1}{x^{2}}-\Frac{1}{x+1})$  }}

 

\vspace*{5mm}

{\bf References}

A.~Loewy, {\em \"{U}ber vollst\"{a}ndig reduzible lineare homogene Differentialgleichungen}, Mathematische Annalen {\bf 56}, 89-117 (1906)

F. Schwarz, {\em Solving Second Order Linear Differential Equations}, CRC Press, 2007.

\end{large}
\end{document}

 

User Interface Functions

Go back to parent